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An iterative scheme is developed for a renormalized effective nearest-neighbor 
coupling K r and effective field per site X r for spins in the rth shell of a Cayley 
tree with nearest neighbor J ,  and  next nearest neighbor J ' ,  interactions between 
Ising spins on the lattice. In addition to the expected paramagnetic,  ferromag- 
netic, and antiferromagnetic phases, we find an intermediate range of J ' / J  < 0 
values where Xr and K r iterate to a continuous or quasicontinuous attractor in 
the X - K  plane. In this range the local magnetization is  mainly chaotic with 
oscillatory glasslike behavior. Embedded in the chaos, however, are regions of 
periodic and commensurate  phases. 

KEY WORDS: Cayley tree; iteration; fixed points; cycles; attractors; 
chaos; spin glass; frequency locking; devil's staircase. 

1. INTRODUCTION 

The Ising model on a Cayley tree has been discussed by many authors; 
most recently by one of us (1'2) from the point of view of iteration. Local 
properties of the model with nearest-neighbor interactions only obtained 
from an iteration scheme from the outermost to innermost shell are in 
accord with the Bethe-Peierls approximation, and moreover in the limit of 
infinite coordination number one recovers the classical Curie-Weiss the- 
ory. (~) Also in this limit, the stable fixed point of the iterative shell-to-shell 
scheme for the quenched Gaussian random bond system is determined 
rigorously by the Sherrington-Kirkpatrick equations. (2) 

I School of Physics, University of Melbourne, Parkville 3052, Australia. 
2 Depar tment  of Mathematics,  University of Melbourne, Parkville 3052, Australia. 
3 Depar tment  of Applied Physics, Tohoku University, Sendai 980, Japan. 

419 
0022-4715 / 83 / 1100-0419503.00/0 �9 1983 Plenum Publishing Corporation 



420 Inawashiro, Thompson, and Honda 

With nearest-neighbor interactions only there are no closed loops on 
the Cayley tree and hence no possibility of frustration effects. Not surpris- 
ingly one obtains in this case, for the nonrandom system, (1~ only fixed 
points of the iteration scheme, corresponding to paramagnetic and ferro- 
magnetic phases, with a bifurcation to an antiferromagnetic phase when the 
nearest-neighbor coupling constant changes sign. With competing next- 
nearest-neighbor interactions, frustration ,effects are possible and more 
exotic phases can be expected to appear. Indeed for the coordination 
number three model with nearest-neighbor interactions and competing 
next-nearest-neighbor interactions restricted to spins belonging to the same 
branch of the tree, Vannimenus (3) found, in addition to paramagnetic and 
ferromagnetic (fixed point) phases and a + + - -  periodic (four-cycle) 
antiferromagnetic phase, a modulated phase consisting of commensurate 
(periodic) and incommensurate (aperiodic) regions corresponding to the 
so-called "devil's staircase" found in the ANNNI (4) and other competing 
interaction models. (5) Similar periodic and chaotic trajectories have been 
found recently (6~ in iterative renormalization group schemes which are 
exact on certain frustrated hierarchical lattices. It is natural to assume as 
was done in Ref. 6 that in these chaotic regions one is essentially observing 
a microscopic picture, or a random macroscopic picture, of glasslike 
behavior. 

Independently of Vannimenus, (3) we also investigated the competing 
nearest- and next-nearest-neighbor Ising model on a Cayley tree (v) but 
unlike Vannimenus we considered the model with all interbranch interac- 
tions on the coordination number three lattice discussed earlier by Katsura 
and Takizawa. (8) The motivation for considering this model was based on 
the very high degree of frustration present and also because the model 
corresponds to the usual Bethe-Peierls approximation on the hexagonal 
lattice. Katsura and Takizawa (s) discussed the paramagnetic, ferromag- 
netic, and (period-four) antiferromagnetic phases in the spirit of the Bethe- 
Peierls approximation. Our aim was to study local properties of the model 
from the point of view of iteration with the expectation that some new 
phase might appear. 

Our iteration scheme involves two quantities which can be interpreted 
physically; namely, an effective field X r per site in the rth shell and an 
effective nearest-neighbor coupling constant Kr (incorporating the tempera- 
ture) between spins in the rth and (r + 1)th shell determined iteratively by 
summing successively over spins in the outermost (first) shell to the inner- 
most shell, consisting of three spins surrounding the central spin o 0 as 
shown in Fig. 1. The novel feature of our approach is that for most values 
of J and J '  in a finite strip of J ' / J  < O, where J '  and J are, respectively, 
the next-nearest-neighbor and nearest-neighbor coupling constants, the X r 
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Fig. 1. Portion of a Cayley tree with coordination number  three surrounding a central spin 
o 0 = • I. Full lines denote nearest-neighbor coupling and dotted lines denote next-nearest- 
neighbor coupling. 

and K r iterate to a continuous or quasicontinuous one-dimensional attrac- 
tor in the X - K  plane, giving rise to an oscillatory and chaotic local 
magnetization. Like Vannimenus, however, we find finite and small regions 
of periodic behavior or commensurate phases interspersed in this chaotic 
region. It is of course difficult to distinguish numerically between chaotic 
and long period sequences but we find to all intents and purposes that the 
new intermediate phase between paramagnetic and antiferromagnetic is 
predominantly chaotic. 

In the following section we set up the model and derive the recurrence 
relations for the effective field Xr and the effective nearest-neighbor interac- 
tion K r. Expressions for the local magnetization are given in Section 2 and 
these and the iteration scheme are examined numerically in Section 3. The 
main conclusions are discussed in the final section. 

2. RECURRENCE RELATIONS 

We consider a finite Cayley tree with coordination number  three 
consisting of N shells surrounding a central spin %, as shown in Fig. 1 for 
the case N = 2. We label the shells by an index r ranging from r = 1 for the 
outermost shell to r = N for the innermost shell. 
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Fig. 2. 
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Schematic illustration of selective summation of spins from the outermost to inner- 
most shells. 

In order to set up our iterative scheme we sum successively over spins 
in the outermost (r -- 1) shell as shown schematically in Fig. 2. Simple but 
tedious algebra gives 

exp{ K(olo A + OIOB) -t- Kr(O20A + 020 B "1- OAOB) -t- X ( o  A + OB) } 
OA,OB=+--I 

= Cexp(Wo,o 2 + Uo 2 + V%) (2.1) 

where 

U = U(X,K,K')  = 4-1log[ w(1, 1)w(l, - 1 ) / w ( -  1, 1 )w( -1 ,  - 1 ) t  (2.2) 

V= V ( X , K , K ' ) = 4 - ' l o g [ w ( 1 , 1 ) w ( - 1 , 1 ) / w ( 1 , - 1 ) w ( - 1 , - 1 ) ]  (2.3) 

W =  W ( X , K , K ' ) = 4 - q o g [ w ( 1 , 1 ) w ( - 1 , - 1 ) / w ( 1 , - 1 ) w ( - 1 , 1 ) ]  (2.4) 

w(o,o') = 2eK'cosh(2X + 2K'o + 2Ko') + 2e -K' (2.5) 

and 

C= C ( X , K , K ' ) = [ w ( 1 , 1 ) w ( 1 , - 1 ) w ( - 1 , 1 ) w ( - 1 , - - l ) ]  1/4 (2.6) 

If we begin initially with an N-shell tree and incorporate the tempera- 
ture by defining K -- J / k T ,  K' = J ' / k T  and B = H / k T  to be the nearest- 
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neighbor coupling, next-nearest-neighbor coupling and applied field per 
site, respectively, we obtain from (2.1) on summing over all spins in the first 
(or outermost) shell, a modified ( N -  1)-shell tree with effective outermost 
shell (r = 2) field per site 

X 2 = B + V ( X , , K , , K ' )  (2.7) 

and effective nearest-neighbor coupling between spins in the outermost 
(r = 2) and next outermost shells (r = 3) given by 

I,:2 = 1,: + w(x , i,:') (2.8) 
The effective field per site in the original r = 3 shell is given, from (2.1), by 

X~ = 2 U(X, ,  K, ,  K') (2.9) 

the factor of 2 coming from the fact that two branches from the original 
r -- 2 shell meet at a single site in the r = 3 shell. All other couplings and 
fields in the lattice remain unchanged, and for future convenience we have 
chosen 

X 1 = B  and K I = K  (2.10) 

Repeating the above process it is not difficult to see that after sum- 
ming over spins successively from the first to the (r - 1)th shell, we induce 
an effective field X r per site in what was the original rth shell, and 
an effective nearest-neighbor coupling K r between spins in the rth and 
(r + 1)th shells given recursively by 

X~= B + 2U(X~_2,Kr_e,K') + V(X~_, ,Kr_, ,K'  ) (2.11) 

and 

K r = K-I-  m ( X r _  1 ,Kr_  1 , K ' )  (2.12) 

where for convenience we have combined (2.7) and (2.9) and its iterates 
into one equation (2.11) by making use of the convention 

X 0 = / %  = 0 (2.13) 

[since from (2.2) and (2.6) U(0, 0, K') --= 0]. 
Equations (2.11) and (2.12), with functions U, V, and W defined by 

equations (2.2)-(2.5) constitute our basic recursion relations and for an 
N-shell lattice, with initial conditions (2.10) and (2.13), may be iterated 
from r = 2 to r = N. At the end point of this iteration we are left with a set 
of three spins, ON, OtN, and o~, surrounding the central spin o 0 with effective 
four-spin Hamiltonian jg~(N+ 1) given by 

-fl~'~(4 N+ ') = Kuoo(O N + o' u + o~) + K'(ouO' u + O'NO' ~ + O~OU) 

+ [ B +  3U(X N,K N,K')]o o + X N ( o  N + o '  u+o'~) (2.14) 
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the term 3 U arising from the fact that three branches meet at the central 
spin. 

Local properties involving expectation values of the innermost spins 
(o o, o N, o' N, and o~) may be calculated directly from ~ 4  (N+I). For 
example, the expectation value of the central spin o 0 for an N-shell tree 
which we define to be the local magnet izat ion  is given by 

(O0)N = E ~ -/3~4(N+ ')) / ~, exp( --/3~4(N+ ')) 
(%, o, o', 0'3 (a0, o, a', o") 

(2.15) 

and is completely determined from X N and K N (as given m Appendix A). 
The partition function for the complete lattice, from (2.1) and (2.6), is 

a product of factors C ( X  r, Kr, K ' ) .  This and other bulk quantities for the 
model will not concern us here since, as is well known, the influence of 
boundary effects on bulk quantities results in a very peculiar type of phase 
transition. (9) These effects are eliminated by considering expectation values 
of quantities far removed from the surface such a s  (60) N. When K'  = 0 in 
fact, (Oo) N approaches the usual Bethe-Peierls expression as N approaches 
infinity.(1) 

In the Appendix A we obtain expressions for shell magnetizations, that 
is, expectation values (o~)  N of spins o r in the rth shell. These can also be 
considered local quantities and an alternative definition of local magnetiza- 
tion could be 

where 

m = lim n -1 ~ ,  m k (2.16) 
n ----) ~ 

k = l  

mk= jim <ON-k>N (2.17) 

is the limiting magnetization of spins in the kth shell outward from the 
central spin. Numerically at least, the shell magnetizations and ~o0~ N 
behave in a very similar fashion. 

3. ITERATION OF THE RECURSlON RELATION 

Although in principle the recursion relations (2.11) and (2.12) provide 
us with an exact solution to the problem, one must in practice resort to 
numerical analysis of these relations. We have carried out such an analysis 
and the results are summarized in the phase diagram shown in Fig. 3. 
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Fig. 3. Phase diagram showing ferromagnetic (F), paramagnetie (P), chaotic (C), and 
antiferromagnetic + + - - (A) phases. 

3.1. The  Phase D iagram 

In order to obtain nontrivial results one must begin with B :/= 0 (at 
least for spins in the outermost shell) since otherwise the problem is 
essentially equivalent to the one-dimensional Ising model. (1) The limit 
B o 0 should, therefore, only be taken after the thermodynamic limit. For 
numerical purposes, however, we must take some small finite B in the 
reeursion relations. In all cases we chose B = 10 -5. Also in order to 
normalize the temperature scale we fixed J / k  = 1 so that we have two 
independent variables, T and J ' / J .  

When J'//J is nonnegative we find, not surprisingly, that X r and K r 
approach a stable fixed point of (2.11) and (2.12). (ao) u then approaches a 
well-defined limit as N o  oo corresponding to a ferromagnetic state (a0) 
> 0 (at low temperatures) or a paramagnetic state ( o 0 ) =  0 (at high 
temperatures). The same states result when J '  is negative and small in 
magnitude (relative to J) .  On the other hand, as shown in Fig. 3, when J '  is 
negative and sufficiently large in magnitude, antiferromagnetic coupling 
between every second lattice site becomes important and X r and K r iterate 
to a four-cycle of points in the X - K  plane yielding an antiferromagnetie 
(+  + - - )  state of the same form discussed previously by Katsura and 
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Takizawa. (s) This state, called a modulated (2) phase, was also obtained 
iteratively by Vannimenus. (3) 

The interesting region occurs for intermediate negative values of J '  
where frustration takes hold and the system cannot decide whether it wants 
to be ferromagnetic or antiferromagnetic. The outcome is a predominantly 
chaotic phase in which iterates of (2.11) and (2.12) eventually fall on a 
continuous or quasicontinuous attractor in the X - K  plane. An example is 
shown in Fig. 4 for parameter values T = 0.2, J / k  = 1.0, B = 10 -5, and 
J' = -0.3 .  

When the local magnetization (oo) N is calculated in this intermediate 
region one typically obtains chaotic oscillatory behavior, as illustrated in 
Fig. 5 as a function of N. Moreover, we find numerically that the mean 
value 

lim lim n -1 ~ (oO)k = 0 (3.1) 
B---~0+ n - -~m k =  1 

(or more correctly, the first limit is of order B for sufficiently small B). 
In the case of periodic behavior, however, this is not necessarily the 

case. For example, in the case of period five (corresponding to the sequence 
(23) discussed below) the left-hand side of (3.1) is non-zero. All of the 
above results hold for the innermost to outermost iterative scheme and the 
corresponding shell magnetizations discussed in Appendix A. 

The phase diagram, shown in Fig. 3, is qualitatively similar to Van- 
nimenus' but differs in one very important respect, namely, in the ground 
state (along the T = 0 axis). Vannimenus found a triple or Lipshitz point at 
zero temperature corresponding to the meeting of the paramagnetic, ferro- 
magnetic, and chaotic or modulated phases. In our model, however, the 
chaotic phase persists over a range of values of J ' / J  even at zero tempera- 
ture. We attribute this important difference to the fact that our model is 
completely frustrated whereas Vannimenus' model is only frustrated along 
separate branches. 

In the chaotic phase we found small regions with periodic orbits 
corresponding to commensurate phases. Although it is difficult, of course, 
to distinguish long period behavior from chaos, it seems that the behavior 
in the intermediate region is predominantly chaotic. Indeed, when one 
calculates the wave vector 

q =  lim [ n ( U ) / 2 N  1 (3.2) 
N---~ ~ 

defined by Vannimenus, where n(N) is the number of times (Oo) N changes 
sign, as a function of temperature (with fixed J'/J) w e  find that q has zero 
slope (corresponding to periodic behavior) only on very narrow T intervals. 

For example when J'/J = --0.55 we found frequency locking with 
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Fig. 5. Chaotic glasslike behavior of the local magnetization fO0) N a s  a function of N 
obtained from equation (2.15) for parameter  values k T = 0.4, J = 1.0, and J '  = -0 .35 .  
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Fig. 6. The devil's staircase showing the wave vector q as a function of temperature T for J 
and J '  fixed and J'/J = -0 .55 .  Flat portions of the curve correspond to periodic behavior or 
frequency locking. (a) Overall temperature dependence of q; (b) A part of (a). 
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q = 2 /9  for 0.270 < T < 0.284 and with q = 3 /14  for 0.426 < T < 0.438 as 
shown in Fig. 6a. 

One type of periodicity found for the local magnetization is character- 
ized by a commensurate wave vector 

q = W2(2t + 1) (3.3) 

and corresponds to a cycle we denote by <2t-13>, which indicates a 
sequence of l -  1 pairs of local magnetizations pointing two "up"  and two 
"down" followed by three local magnetizations all pointing up or down to 
maintain an overall "antiphase" character. An illustration for <223>, corre- 
sponding to q = 3/14,  is shown in Fig. 6a. 

Several examples of frequency locking for J ' / /J  = - 0 . 5 5  are seen as 
flat parts of the q - T  curve shown on an enlarged scale in Fig. 6b. As can 
be seen from this figure, we found several types of hybridized sequences. 
For example, the sequence <2 l-  13213>, characterized by the wave vector 

21 + 1 (3.4) 
q - 8(I + i) 

was found in a temperature region between temperatures corresponding to 
cycles (213) and <2l-t3>. Also, as shown on Fig. 6b, we found cycles 

q 

0,25 3/13 / 
, ~  ~i~o 

0.20 

0,15~I / " 

O, lO I I I I I 
0,3 0,4 0,5 0,6 0,7 

-j,/j >- 

I 
0,8 

Fig. 7. The wave vector q as a function of - J ' / J  for fixed temperature kT= 0.4J. Only 
several lockings for main commensurate phases are shown. 
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(243(253)2), (243(253)3), (243(253)4), and (243(253) 5) in temperature re- 
gions between those of (253) and (243253) and an extended sequence 
(243253243(253) 2 ) between (243(253) 2 ) and (243253). Similar types of se- 
quences, and therefore locking of q, were found all over the chaotic region. 

The largest period obtained numerically was of length 272 at k T / J  
- 0.0979 although undoubtedly there are longer period phases embedded 
in the chaos. In particular, the existence of long periods of the type (2 i- t3) 
and (2t-132t3) close to q = 1/4 at low temperatures shown in Fig. 6b 
presumably arise from weak modifications of the fundamental (2) anti- 
phase. 

The wave vector is also plotted as a function of - J ' / J  for fixed 
temperature k T  = 0.4J in Fig. 7 where only several of the main cycles are 
shown. 

It is tempting to conjecture on the basis of the observed proliferation 
of hybridized sequences of the form ((2/~3)k'(2t23) k . . . .  ) that the set of T 
regions where such phase locking occurs is dense on the line. (Or in other 
words between any two sequences of this form there is a third extended 
sequence of the same form.) In this case one might expect a general 
expression for q given by 

q = (m + n) / (4m + 5n) (3.5) 

in the interval 1/5 < q < 1/4, for example, reflecting the so-called "period- 
adding phenomena" of nonlinear mappings. (11) Indeed, all values of q 
found so far in the interval 1/5 < q < 1/4 can be expressed in the form 
(3.5) with (3.3) and (3.4) in particular obtained by taking m = l - 2, n = 2 
and m = 21 - 3, n = 4 respectively. It may well be that the set of T values 
where locking does not occur has zero measure in which case we would 
have a complete rather than an apparent incomplete devil's staircase in 
Fig. 6a. 

3.2. The Evolution and Nature of the Attractor 

In our study of the chaotic region in the phase diagram we observed 
an interesting evolutionary phenomenon involving the attractor in the X - K  
plane, from its appearance at the boundary of the paramagnetic and 
chaotic phases to its eventual disappearance at the boundary of the chaotic 
and the antiferromagnetic phases. 

For fixed temperature and decreasing negative J'/J, Figs. 8a-c show 
typical growth, evolution, and decay of the attractor. Firstly, when the 
paramagnetic fixed point becomes unstable, a small figure-eight attractor is 
born in its place (Fig. 8a) and grows to a larger figure-eight as IJ' I increases 
(Fig. 8b). The figure-eight then begins to droop (shown in Fig. 8c) and later 
develops gaps (a sure sign of ageing). The gappy-eight then develops two 
bottom pieces and a flat top, which further splits in two. The remaining 
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Fig. 8. Attractors showing typical growth, evolution and decay at k T =  0.4J. (a) J ' / J  = 

-0 .3 ,  (b) J'/J = -0 .4 ,  (c) J'/J = -0 .6 .  

four pieces of the original figure-eight then contract until they become 
points of the antiferromagnetic four-cycle when the phase boundary be- 
tween the chaotic and antiferromagnetic phases is crossed. 

It is interesting that the birth, growth, and death of the attractor is 
essentially a continuous process but nevertheless punctuated here and there 
with a momentary collapse of the continuous or quasicontinuous attractor 
into a discrete set of points constituting a periodic cycle. We have also 
observed instances where the attractor takes on a Cantor setlike appearance 
although this is probably long cyclic behavior or even a very sparse 
quasicontinuous attractor. 

In order to further investigate the nature of the attractor we have 
computed the Lyapunov exponent K defined by 

r = lira n-lloglXma• (3.6) 
n - - ) ~  

where Xmax(n) is the maximum eigenvalue of the product matrix J n J n _  1 �9 ' �9 

J J o ,  where Jk is the Jacobian of a transformation (given in Appendix B), 
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which is equivalent to the transformation (2.11), (2.12), evaluated at the kth 
step of the iteration. 

Recall that departure from differences in initial sets of data after n 
iterations is essentially given by exp(n~) for large n, so that if the map is 
contracting, ~ negative corresponds to cyclic behavior, whereas ~ positive 
would usually correspond to a strange attractor. We find negative ~ in the 
periodic intervals as expected, but typically ~ is otherwise zero in the 
chaotic region corresponding to a continuous or quasicontinuous attractor. 
It is almost certain that our attractor is never strange. 

4. CONCLUSIONS 

In this paper we have studied the Ising model on a Cayley tree with 
competing nearest-neighbor (J  > 0) and next-nearest-neighbor ( J '  < 0) in- 
teractions. By summing over successive shells from the outermost (r = 1) to 
innermost (r = N) shell we obtain recursion relations for effective fields X r 
and n n  interactions K r which are rigorous, but which must in general be 
analyzed numerically. 

For weak J ' ,  the dominant nn  interaction J is responsible for ferromag- 
netic (or paramagnetic) behavior of the system, and a fixed point is reached 
in the recursion relations. On the other hand, when the n n n  interaction J '  is 
strong, antiferromagnetic coupling between every second lattice site be- 
comes important and a four-cycle appears in the recursion relation corre- 
sponding to an antiferromagnetic (+  + - - )  or (2)  phase. For an interme- 
diate range of the n n n  interaction, however, frustration effects dominate 
and a new phase is obtained. In this new phase the recursion scheme 
exhibits a continuous or quasicontinuous attractor and this is reflected in 
chaotic behavior of the local magnetization. We also found narrow bands 
of periodic behavior in this intermediate region giving rise to a devil's 
staircase for the natural wave vector of the system. 

As for periodic sequences of the local magnetization with commensu- 
rate wave vector q, the main sequence (2 t- 13), which is of the same form 
found in the ANNNI  model, (4) was found numerically up to l = 32. 

In addition to the main sequence we found new hybridized sequences 
of the form (2t-13213) and more complicated sequences (243(253) m) with 
m = 2, 3, 4, 5 as well as an extended sequence (243253243(253)2). We believe 
that these types of sequences and possibly more generalized ones exist for 
other values of the parameters J ' / J  and T which may even form dense sets 
in the chaotic region. 

In conclusion, it is interesting that as was also shown in Ref. 6 chaotic 
glasslike behavior can be obtained solely and rigorously from a model with 
competing nearest- and next-nearest-neighbor interactions without having 
to resort to the traditional, and somewhat artificial, introduction of 
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quenched bond disorder. (I~ In view of the well-known connection between 
local properties on a Cayley tree and the Bethe-Peierls approximation on a 
corresponding translationally invariant lattice, it is tempting to speculate 
that similar phenomena, involving the full interplay between attractors and 
chaotic behavior, may be present on other frustrated regular lattices with 
competing interactions. 
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APPENDIX A. EXPECTATION VALUE OF AN ARBITRARY SPIN 

In order to calculate expectation values of spins at arbitrary sites in the 
lattice it is convenient to start from the central spin and proceed outward to 
the outermost shell. For this purpose we need slightly more general expres- 
sions than those given in equations (2.1)-(2.6). Thus in place of (2.1) 
consider the four-spin system described by the Hamiltonian 

-flo~g~4 = KAalo A + KeoW8 + K'(a2a A + 0208 + aAae) + XAo A + XBo ~ 

(A1) 
We still have a formula analogous to (2.1), namely, 

e x p ( -  fl~f~4) = C e x p ( W o , a  z + Ua 2 + VO'l) (A2) 
OA,OB=+-I 

with U, V, W, and C given by (2.2), (2.3), (2.4), and (2.6), respectively, but 
now, in place of (2.5), we have 

w(o, ,o2) = 2eK'cosh[XA + X.  + 2K'o, + (KA + K.)o2]  

+ 2e-K'cosh[XA - X• + (KA -- K,  )02] (A3) 

Consider now the sequence of four-spin Hamiltonians 

- -  f l ~ ' ~ 1  r + l )  = Kror+2Or+ , -},- Kr(Ir+l(a r "[- Otr) 

+ 2rOr+2 + Xr(Or + 0;) + (B + 2 Vr + Or)Or+, 

-I- Kt(orOtr -'1- OtrOr+2 -I- Or+2Or) (A4) 

for a system of four spins centered on or+ 1, for r - N, N - 1 . . . .  ,2,  1, in 
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such a way that  ~ 4  ( N +  |) represents the effective four-spin Hamil tonian  for 
the central spin (% = ON+ l) of the original lattice, Eq. (2.14) so that Xr, Kr, 
and U r -~ U ( X r , K r , K '  ) are obta ined iteratively from (2.11) and (2.12). To 
begin a new iteration in reverse we choose 

X N =  XN,  I (N= KN, and O N =  U N (A5) 

In order  to proceed outwards from the center we use (A2) in reverse 
with 01 = or+ I and 0 2 = o r to construct  a six-spin Hamil tonian  given via 
(A2) by 

_ B <r> 

= I~rOr+2Or+ ' "4- Kror+,o r + Kror+|o' ~ + Kr_,or(or_ 1 + o'~_,) + Xror+2 

"4- ( O -4- U r .-b Or)Or+ I -[- Xr  O; "~- ( B .4= 2 Ur_ , )o  r -~= X r _  l ( Or_ 1 4" (Ifi_l) 

+ K'(arO'  r + OtrOr+2 + Or+2O r "{- Or+lOtr_l -I- Or_lOt_ 1 dr= Or_ iO ' r+ l )  

(A6) 

where 

and 

and 

/s = K +  l~r_ 1 (A9) 

U r - !  = 4--11og[Wr( 1, 1 ) f i r ( -  l, 1 ) /~r (1 ,  - 1 ) ~ r ( -  1, - 1 ) ]  (A10) 

E - ,  = 4 - ' l ~  V~r(l, l))~r(l '  -- 1)/)~r(--  I, l)~4~r(-- I, - - l ) ]  ( A l l )  

l~r_ , = 4 - ' l o g i e r ( I ,  1) r}r ( -  1, - 1)/r?r(1, - 1 ) r? r ( -  1, 1)] (A12) 

wr(~ ~ = 2eK'c~  + )~r + 2 K ' o  + ( K  r + / ( r )o ' ]  

+ 2e -K ' cosh [Xr  - AT~ + ( K  r - Kr)o']  (AI3)  

The initial conditions are given by (A5) and the above relations hold for 
r = N, N -  I . . . .  to the outermost  shell r = I. The  expectat ion value of a 

We then use (A1), (A2), and (A3) to obtain 

exp( - fi;gg'(6 r)) = C exp( - fl;~f~(4 ̀)) (A7) 
r Or, #r+2 ~ +--- l 

where - / ~ 4  ~r) is given by  (A4) with r replaced b y  r - 1, X r and K r are 
given by  recurrence relations (2.11) and (2.12), and X r and K~ are given by 
the outward recurrence relations 

X r - I  = B'I= Ur-]- O r +  Vr--1 (A8) 
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typical spin in the rth shell is given by 

<or) N = Tr[ orexp(-/3~(f4(0 ) ] / T r [ e x p ( -  fl~4(O) ] 

=- Cr/D~ (A14) 

where 

Dr = exp(ZKr-'  + / ~ - , ) c ~  , + 2X~-, + )~r-,) 

4- exp(-2Kr_ 1 -- l {r_l)cosh(Br_ , -- 2Xr_ 1 -- )~r- I) 
+ exp( -4K ' ) [2  exp(/s , + )(~_,) 

+ 2exp( - / s  .g~_ ,) 

+ exp(2K~_, - / r  ,)cosh(B~_, + 2 < _ ,  - A~_ ,) 

+ exp(-2K~_,  + / s  2X~_ 1 + A~_,)] 

(A15) 

O r _  l = B + 2Vr_ ,  + (In_, (A16) 

and C~ is obtained from (A15) by replacing the hyperbolic cosine functions 
with hyperbolic sine functions. 

Note in particular, that the expectation value of the central spin (2.15) 
(in the present notation <ON+I)U) is given by (A14) with r = N + 1. 

APPENDIX B. A TRANSFORMATION EQUIVALENT TO 
(2.11) AND (2.12) 

The iterative equations (2.11) and (2.12) are easily rewritten in the 
more usual first order form 

X~ = B + 2U~_, + V(X~_ l ,Kr_ 1 , K  t) (B1) 
ir  = i,: + Kr_, ,  1':3 (B2) 

U,. = U ( X ~ _ , ,  Kr_ , ,  K ' )  (B3) 

for three variables Xr, K~, U~. Introducing three new variables by 

x r = e x p ( - 2 K ~ ) [ e x p ( 2 U r )  + e x p ( 2 X ~ ) l / u  (B4) 

yr = {exp[2(X~ + U~ ) ] -  l } / u  (B5) 

z r = exp( - 2K r ) [ exp(2 U~ ) - exp(2X~ ) ] / u (B6) 

where 

u = exp[2(X~ + Ur) ] + 1 (B7) 
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we obtain an iterative scheme for 
nimenus's, (3) namely, 

X r + l = [ b 4 ( x 2 + z 2 ) - t ' ( 1  + v2) q-2(Xr+YrZr)] /a2Or ( B 8 )  

Yr+l  ~-" 2[b4yr + XrZr Ac Zr + XrYr]/ar  (B9)  

z,+, = - 2 [  baxrZ, + y,  + zr + XryrJ/a~Dr (B10) 

where 

these new variables similar to Van- 

D~ = b4(1 +y2)  + x~ + zf + 2(x r +yrZr) (Bll) 

a = e x p ( J / k T )  (B12) 

b = e x p ( J ' / k T )  (B13) 

Lyapunov exponents were calculated for the iterative scheme (B8), (B9), 
and (B 10). 
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